Résumé | The reachability problem for vector addition systems is one of the most difficult and central problem in theoretical computer science. The problem is known to be decidable, but despite instance investigations during the last four decades, the exact complexity is still open. For some sub-classes, the complexity of the reachability problem is known. Structurally bounded vector addition systems, the class of vector addition systems with finite reachability sets from any initial configuration, is one of those classes. In fact, the reachability problem was shown to be polynomial-space complete for that class by Praveen and Lodaya in 2008. Surprisingly, extending this property to vector addition systems with states is open. In fact, there exist vector addition systems with states that are structurally bounded but with Ackermannian large sets of reachable configurations. It follows that the reachability problem for that class is between exponential space and Ackermannian. In this paper we introduce the class of polynomial vector addition systems with states, defined as the class of vector addition systems with states with size of reachable configurations bounded polynomially in the size of the initial ones. We prove that the reachability problem for polynomial vector addition systems is exponential-space complete. Additionally, we show that we can decide in polynomial time if a vector addition system with states is polynomial. This characterization introduces the notion of iteration scheme with potential applications to the reachability problem for general vector addition systems. |